Vue.js
1.0.0
1.0.0
  • README
  • Git
    • Basic
    • Remote Repository
    • Log & Diff
    • Rebase&Cherri-Pick
    • git-flow
  • DevOps
    • Monolithic vs MSA
    • Jenkins 시작하기
    • Airflow 시작하기
    • Airflow 시작하기
    • Build Tools
      • maven
  • 개발 방법론
    • TDD
  • Spring
    • IoC
    • Is Spring Bean Thread-Safe?
    • Spring Singleton
    • Component Scan
    • Spring Annotation
    • 의존 관계 주입(DI)
    • Lombok 활용하기
    • Bean 생명주기와 콜백
    • Bean Scope
    • AOP(1) - AOP란
    • AOP(2) - Aop Proxy
    • AOP(3) - Dynamic Proxy
    • AOP(4) - AspectJ
    • POJO
    • Spring 서비스 구조
    • Transaction
    • JPA란?
    • JPA Entity
    • Spring Data JPA
    • Spring Data Specification
    • Model Mapping
    • Cache
    • restTemplate
    • YAML 파일 설정
    • Spring Boot
      • H2 DB 설정
      • 다중 데이터베이스 설정
      • Mybatis 연동하기
    • Spring Batch
      • Batch 시작해보기
      • Batch Job Flow
      • Job
      • Step
      • Batch Scope & Job Parameter
      • JobRepository와 메타테이블
      • Chunk 지향 프로그래밍
      • ItemReader
      • ItemProcessor
      • ItemWriter
      • Batch Schedular
      • Job별 Bean등록하기
      • Batch 구현시 발생한 오류 정리
      • Spring Batch Scaling
        • Multithread Job구현시 이슈사항
    • Spring test
      • Junit5
        • 테스트 이름 표기
        • 테스트 그룹 사이의 관계
        • 태그와 필터링
        • 동적 테스트
        • 테스트 LifeCycle
        • 테스트 메서드
        • 테스트 순서
        • AssertJ
        • 테스트 병렬 실행
        • AssertJ
        • Mock
      • Spring Boot Test DB 분리
      • Spring Batch Test
  • Web Application
    • Web Server & WAS
    • 관련 개념 - HTTP API, HTML, CSR, SSR
    • Servlet
    • JSP
    • Cookie And Session
    • 예외페이지
    • Java Bean
    • JDBC
    • Connection Pool
    • 파일 업로드
    • Expression Language
    • JSTL
    • FrontController패턴 Command 패턴
    • Forwarding
    • MVC
    • 회원가입예제
    • 참고
      • 개발환경설정
  • Java+
    • SOAP/WSDL vs REST
    • WSDL을 JAVA로 변환하기
    • SOAP 통신 OPEN API로 개발해보기
  • Java
    • Basic
      • 변수와 타입
      • 연산자
      • 조건문과 반복문
      • 참조 타입
      • 클래스
      • 상속(Inheritance)
      • 인터페이스(Interface)
      • 중첩 클래스와 중첩 인터페이스
      • 예외 처리
      • API - Object, System, Class, Math, Wrapper
      • API - String, StringBuffer, StringBuilder
      • Thread
      • Generic
      • Lambda
      • Collection - List, Set
      • Collection - Map
      • Collection - Tree
      • Collection - Stack, Queue
      • Stream
      • Reflection
      • 정규표현식
      • GUI
      • UML
      • Serializable
    • Advanced
      • OutOfMemoryError
      • AutoValue
      • meta-annotation
        • @Retention
        • @Target
        • @Repeatable
    • Effective Java 3/E
      • ITEM 1: Static Factory Method(정적 메소드)
      • ITEM 2: Builder Pattern
      • ITEM 3: Singleton
      • ITEM 4: Private Constructor
      • ITEM 5: Dependency Injection
      • ITEM 6: Avoid Unnecessary Object
      • ITEM 7: Eliminate Object Reference
      • ITEM 8: Avoid finalizer and cleaner
      • ITEM 9: try-with-resources
      • ITEM 10: The gerneral contract when overriding equlas
      • ITEM 11: Overriding hashCode
      • ITEM 12: overriding toString
      • ITEM 13: overriding clone judiciously
      • ITEM 14: Consider implementing comparable
      • ITEM 15: 클래스와 멤버의 접근을 최소화해라
      • ITEM 16: Use Accessor methods
      • ITEM 17: 변경 가능성을 최소화해라(불변 클래스)
      • ITEM 18: 상속보단 컴포지션을 사용해라
      • ITEM 19: 상속을 고려해 설계하고 문서화해라
      • ITEM 20: 추상 클래스보다 인터페이스를 우선하라
      • ITEM 21: 인터페이스는 구현하는 쪽을 생각해 설계해라.
      • ITEM 22: 인터페이스는 타입을 정의하는 용도로만 사용해라
      • ITEM 23: 태그 달린 클래스보다 클래스 계층구조를 활용해라
      • ITEM 24: 멤버 클래스는 되도록 static으로 구현해라
      • ITEM 25: 톱레벨 클래스는 한 파일에 하나만 생성해라.
      • ITEM 26: Raw type은 사용하지 마라
      • ITEM 27: 비검사 경고를 제거해라
      • ITEM 28: 배열보다는 리스트를 사용해라
      • ITEM 29: 이왕이면 제네릭 타입으로 만들어라
      • ITEM 30: 이왕이면 제네릭 메서드로 만들어라
      • ITEM 31 : 한정적 와일드카드를 사용해 API 유연성을 높여라
      • ITEM 32: 제네릭과 가변인수를 함께 쓸 때는 신중해라
      • ITEM 33: 타입 안전 이종 컨테이너를 고려해라
      • ITEM 34: int 상수 대신 열거 타입을 사용해라
      • ITEM 35: ordinal 메서드 대신 인스턴스 필드를 사용해라
      • ITEM 36: 비트 필드 대신 EnumSet을 사용해라
      • ITEM 37: ordinal 인덱싱 대신 EnumMap을 사용해라
      • TEM 38 : 확장할 수 있는 열거타입이 필요하면 인터페이스를 사용해라
      • ITEM 39: 명명 패턴보다 애너테이션을 사용해라
      • ITEM 40: @Override 어노테이션을 일관되게 사용해라
      • ITEM 41: 정의하려는 것이 타입이라면 마커 인터페이스를 사용해라
      • ITEM 42: 익명 클래스보다는 람다를 사용해라
      • ITEM 43: 람다보다는 메서드 참조를 사용해라
      • ITEM 44: 표준 함수형 인터페이스를 사용해라
      • ITEM 45: 스트림은 주의해서 사용해라
      • ITEM 46: 스트림에서 부작용 없는 함수를 사용해라
      • ITEM 47: 반환 타입으로는 스트림보다 컬렉션이 낫다.
      • ITEM 48: 스트림 병렬화는 주의해서 사용해라
      • ITEM 49: 매개변수가 유효한지 검사해라
      • ITEM 50: 적시에 방어적 복사본을 만들어라
      • ITEM 51: 메서드 시그니처를 신중히 설계해라
      • ITEM 52: 다중정의는 신중히 사용해라
      • ITEM 53: 가변인수는 신중히 사용해라
      • ITEM 54: null이 아닌, 빈 컬렉션이나 배열을 반환해라
      • ITEM 55: Optional 반환은 신중하게 해라
      • ITEM 56: 공개된 API 요소에는 항상 주석을 작성해라
      • ITEM 57: 지역변수의 범위를 최소화해라
      • ITEM 58: 전통적인 for 문보다는 for-each문을 사용해라
      • ITEM 59: 라이브러리를 익히고 사용해라
      • ITEM 60: 정확한 답이 필요하다면 float와 double은 피해라
      • ITEM 61: 박싱된 기본 타입보다는 기본 타입을 사용해라
      • ITEM 62: 다른 타입이 적절하다면 문자열 사용을 피해라
      • ITEM 63: 문자열 연결은 느리니 주의해라
      • ITEM 64: 객체는 인터페이스를 사용해 참조해라
      • ITEM 65: 리플렉션보다는 인터페이스를 사용해라
      • ITEM 66: 네이티브 메서드는 신중히 사용해라
      • ITEM 67: 최적화는 신중히 해라
      • ITEM 68: 일반적으로 통용되는 명명 규칙을 따라라
    • 객체지향 설계 원칙(SOLID)
    • 디자인패턴
      • Strategy Pattern
      • Template Method Pattern
      • Factory Method Pattern
      • Singleton
      • Delegation
      • Proxy
      • Adapter Pattern
    • 실습
      • 인터페이스 실습 - Vehicle
      • 인터페이스 실습 - Remote
      • GUI 실습 - Calculator
      • GUI 실습 - button
      • GUI 실습 - lotto
      • Thread 실습 - 좌석예약, 메세지보내기
    • Jar vs War
  • 데이터베이스
    • KEY
    • Index
    • Transaction
    • Trigger
    • Procedure / Function
    • Package
    • 데이터베이스 배움터
      • 데이터베이스 시스템
      • 관계데이터 모델
      • 관계대수와 SQL
    • MySQL
      • Database란
      • MySQL 시작하기
      • MySQL Database
      • MySQL Table
      • CRUD
      • 관계형 데이터베이스
      • Server와 Client
    • PostgreSQL
    • NoSQL
      • Install Cassandra on mac
      • Cassandra란?
      • NiFi란
  • Algorithm
    • String
    • Recursion
    • Dynamic Programming
    • Array, Struct, Pointer
    • Math
    • Sort
    • List
    • Stack
    • Queue
    • Graph
    • Tree
    • Maze
    • AVL
    • 이진탐색트리(Binary Search Tree)
    • DFS와 BFS
    • 다익스트라 알고리즘(Dijkstra's Algorithm)
    • Red-Black 트리
    • A* 알고리즘
    • Heap
    • Huffman Coding
    • Priority Queue
    • Bellman-Ford 알고리즘
    • C++
      • Class
      • STL
        • STL pair
        • STL Container - Associate Container
        • STL Container - Sequence Container
        • STL Container - Container Adapter
  • JavaScript
    • JABASCRIPT BASIC
    • Shallow Copy vs Deep Copy
    • OBJECT MODEL
    • NODE
    • 동기 처리 vs 비동기 처리
    • AJAX
    • CALLBACK
    • PROMISE
    • DEFERRER
    • UNDERSCORE
    • WEBPACK
    • SCOPE
    • EXECUTION CONTEXT
    • Image Object
    • BFCache란?
    • history.scrollRestoration
    • Intersection Observer
    • JWT - JSON Web Token
    • HTML vs JSON
  • Vue.js
    • 환경설정
    • Vue.js란?
    • Vue Instance
    • Vue Component
    • Vue Router
    • HTTP 통신
    • Template
    • Single File Component
    • Vue Animation
    • Vuex
    • Djnago와 연동하기
  • Backbone.js
    • Model
    • Collection
    • Sync
    • view
  • Node.js
    • Doit! - 노드로 만들 수 있는 대표적인 서버와 용도
    • Doit! - 노드에 대해 알아보고 개발 도구 설치하기
    • Doit! - 노드 간단하게 살펴보기
    • Doit! - 노드의 자바스크립트와 친해지기
    • Doit! - 노드의 기본 기능 알아보기
    • Doit! - 웹 서버 만들기
    • Doit! - 데이터베이스 사용하기
    • Doit! - 익스프레스 프로젝트를 모듈화하기
    • Doit! - 뷰 템플릿 적용하기
    • Doit! - 패스포트로 사용자 인증하기
    • Doit! - 채팅서버 만들기
    • Doit! - JSON-RPC 서버 만들기
  • Python
    • Warning-Could not import the lzma module
    • Pandas
      • Pandas 자료구조
      • Pandas 데이터 입출력
      • DataFrame Data 살펴보기
      • 시각화 도구 - Matplotlib
  • ML
    • 추천 시스템
      • Collaborative Filtering
      • Matrix Factorization
  • Django
    • Basic
      • 환경설정
      • About Django
      • Start Django Project
      • Secret Key 관리하기
      • Settings 분리하기
      • Django App
      • Django View & URL (1)
      • Django Model
        • MySQL 연동
      • Django Admin
      • Django View & URL (2)
      • Django Template
      • Django Template & View & URL
      • Django Static
      • Django form
    • Advanced
      • Django Generic View
      • Django Automated Testing
      • Django Extenstion Template
      • Django Model Package
      • Django OpenSSL setting
    • REST framework
      • Rest API
      • Serializers
      • ViewSet
    • Error
      • 환경설정 zlib 오류발생
      • ModuleNotFoundError
    • 패키지
      • django-debug-toolbar
    • Vue.js 연동하기
  • Ruby
    • variable & input/output
    • 조건문
    • 반복문
    • Array & Hash
    • Method
    • Proc&Lamda
    • Class
  • Ruby on Rails
    • Scaffolding
    • Controller
    • Model
    • Model-M:N relation
    • Model Validation
    • 멋사 10주차 수업(Tip)
  • HTML/CSS
    • Udacity - Intro to HTML/CSS
    • Udacity - Responsive Web Design
    • Udacity - Responsive Images
    • HTML Basic
    • CSS Basic
    • HTML5 Sementic Tag
    • HTML 텍스트 관련 태그들
    • HTML5 멀티미디어
    • HTML 폼 관련 태그들
    • 텍스트 관련 스타일
    • 색상과 배경을 위한 스타일
    • 레이아웃을 위한 스타일
    • CSS 포지셔닝
    • 다재다능한 CSS3 선택자
    • CSS와 애니메이션
    • 반응형 웹이란?
  • OS(운영체제)
    • Linux
      • Daemon
      • Cron
      • 프로세스 관련 명령어
      • 텍스트 파일 명령어
  • Network
    • 네트워크 기본 개념
    • 네트워크 기본 규칙
    • 물리 계층
    • 데이터 링크 계층
    • 네트워크 계층
    • 전송 계층
    • 응용 계층
    • 네트워크 전체 흐름
    • 무선 랜
  • IT 기타지식
    • NAS란
Powered by GitBook
On this page
  • 시간 복잡도
  • Rotation
  • 구현

Was this helpful?

  1. Algorithm

AVL

AVL 트리는 Balanced Binary Search Tree이다. AVL 트리는 각각 노드마다 왼쪽, 오른족 서브트리의 높이 차이에 대한 정보를가지고 서브트리의 높이 차이가 1보다 크지않다는 성질을 가진다.(위키피디아 )

즉, 양쪽 서브트리의 높이 차이가 1이하이다.

균형잡힌 AVL 트리는 n개의 원소가 있을 때 O(logn)의 시간복잡도로 검색, 삽입, 삭제를 할 수 있다.

시간 복잡도

평균
최악의 경우

공간

O(n)

O(n)

검색

O(logn)

O(logn)

삽입

O(logn)

O(logn)

삭제

O(logn)

O(logn)

Rotation

트리의 재구성 작업을 Rotation(회전)이라고 한다.

LL

         z                                      y 
        / \                                   /   \
       y   T4      Right Rotate (z)          x      z
      / \          - - - - - - - - ->      /  \    /  \ 
     x   T3                               T1  T2  T3  T4
    / \
  T1   T2

y는 z의 왼쪽 자식, x는 y의 왼쪽 자식이다. 이때 T1, T2, T3, T4는 각각의 서브트리이다.

z의 오른족 자식과 왼쪽 자식이 불균형하므로 right Rotation 한번으로 균형을 잡아줄 수 있다.

if (bal > 1 && key < node->left->key) return right_rotate(node);

LR

     z                               z                           x
    / \                            /   \                        /  \ 
   y   T4  Left Rotate (y)        x    T4  Right Rotate(z)    y      z
  / \      - - - - - - - - ->    /  \      - - - - - - - ->  / \    / \
T1   x                          y    T3                    T1  T2 T3  T4
    / \                        / \
  T2   T3                    T1   T2

y는 z의 왼쪽 자식, x는 y의 오른쪽 자식이다. 이러한 경우에는 회전을 두번시켜줘야한다. 우선 y를 왼쪽 회전을 한번 시켜주고 z를 오른쪽 회전시켜주면 균형이 잡히게 된다.

if (bal > 1 && key > node->left->key){
    node->left =  left_rotate(node->left);
    return right_rotate(node);
}

RR

 z                                y
 /  \                            /   \ 
T1   y     Left Rotate(z)       z      x
    /  \   - - - - - - - ->    / \    / \
   T2   x                     T1  T2 T3  T4
       / \
     T3  T4

y는 z의 오른쪽 자식이고, x는 y의 오른쪽 자식이다. 이러한 경우는 LL과 마찬가지로 한번의 rotation으로 균형을 잡을 수 있다.

if (bal < -1 && key > node->right->key) return left_rotate(node);

RL

   z                            z                            x
  / \                          / \                          /  \ 
T1   y   Right Rotate (y)    T1   x      Left Rotate(z)   z      y
    / \  - - - - - - - - ->     /  \   - - - - - - - ->  / \    / \
   x   T4                      T2   y                  T1  T2  T3  T4
  / \                              /  \
T2   T3                           T3   T4

y는 z의 오른쪽자식, x는 y의 왼쪽 자식이다 .이러한 경우는 위의 LR과 정 반대인 경우이다. 이 때는 오른쪽 회전 후 왼쪽 회전을 하면 균형을 맞출 수 있다.

if (bal < -1 && key < node->right->key){
    node->right = right_rotate(node->right);
    return left_rotate(node);
}

구현

typedef struct node{
    int key;
    struct node * left, *right;
    int height; // 높이
}Node;

Node * new_node(int key){
    Node * new = (Node *)malloc(sizeof(Node));
    new->key = key;
    new->height = 0; //새로운 노드는 기본적으로 단말 노드의 height를 가진다.
    new->left = new->right = NULL;
    return new;
}

height

int height(Node * node){
    if(node == NULL) return -1;
    return node->height;
}

Right Rotation

/*
         z                                      y(l) 
        / \                                   /   \
       y   T4      Right Rotate (z)          x      z(node)
      / \          - - - - - - - - ->      /  \    /  \ 
     x   T3                               T1  T2  T3(r) T4
    / \
  T1   T2

*/
Node * right_rotate(Node * node){
    Node * l = node->left;
    Node * r = l->right;
    
    l->right = node;
    node->left = r;
    
    node->height = 1+MAX(height(node->left),height(node->right));
    l->height = 1+MAX(height(l->left),height(l->right));
    
    return l;
}

Left Rotation

/*
 z                                 y(r)
 /  \                            /     \ 
T1   y     Left Rotate(z)       z(node)  x
    /  \   - - - - - - - ->    / \      / \
   T2   x                     T1 T2(l) T3  T4
       / \
     T3  T4
*/

Node * left_rotate(Node * node){
    Node * r = node->right;
    Node * l = r->left;
    
    r->left = node;
    node->right =l;
    
    node->height = 1+MAX(height(node->left),height(node->right));
    r->height = 1+MAX(height(r->left),height(r->right));
    
    return r;
}

balance

int balance(Node * node){
    if(node == NULL) return 0;
    // 양쪽 서브트리의 높이를 비교한다.
    return height(node->left)-height(node->right);
}

삽입

위의 Rotation을 이용해서 삽입을 구현할 수 있다.

  1. 우선 BST의 삽입과 같이 삽입한다.

  2. 현재의 height값을 update해준다.

  3. balance한지 확인한다.(-1미만 1초과 불균형)

  4. 불균형하다면 LL, LR, RR, RL 의 각각의 경우에 맞게 rotation해준다.

Node * insert(Node * node, int key){
    
    // 1. 먼저 Binary Search Tree의 삽입과 같이 삽입한다.
    if (node == NULL)
        return(new_node(key));
    
    if (key < node->key)node->left  = insert(node->left, key);
    else if (key > node->key) node->right = insert(node->right, key);
    else return node; //값이 같은 경우에는 BST의 삽입과 같지 않고 바로 리턴해준다.
    
    // 2. height값을 변경해준다.
    node->height = 1 + MAX(height(node->left),height(node->right));
    
    // 3. balance한지 확인을 한다.(-1미만 1초과면 불균형)
    int bal = balance(node);
    
    // 4. 불균형한 경우에 rotation!
    // LL
    if (bal > 1 && key < node->left->key) return right_rotate(node);
    
    // RR
    if (bal < -1 && key > node->right->key) return left_rotate(node);
    
    // LR 두번회전(left->right)
    if (bal > 1 && key > node->left->key){
        node->left =  left_rotate(node->left);
        return right_rotate(node);
    }
    
    // RL
    if (bal < -1 && key < node->right->key){
        node->right = right_rotate(node->right);
        return left_rotate(node);
    }
    
    return node;
}

삭제

  1. 우선 BST의 삭제와 같이 삭제하다.

  2. 현재 노드는 반드시 삭제노드의 조상노드 중 하나여야한다.

  3. 현재의 height값을 update해준다.

  4. balance한지 확인한다.(-1미만 1초과 불균형)

  5. 불균형하다면 LL, LR, RR, RL 의 각각의 경우에 맞게 rotation해준다.

Node* delete(Node* root, int key){
    Node * tmp;
    
    // 1. BST 삭제
    if (root == NULL) return root;
    if ( key < root->key )root->left = delete(root->left, key);
    else if( key > root->key ) root->right = delete(root->right, key);
    else{// 키값이 같으면 그 노드를 삭제
        if(root->left == NULL || root->right == NULL){
            if(root->left!=NULL)tmp = root->left;
            else tmp =root->right;
            
            // 자식이 없는 경우
            if (tmp == NULL){
                tmp = root;
                root = NULL;
            }
            else *root = *tmp; // 자식이 한개인 경우
            
            free(tmp);
        }else{//자식이 두개인 경우
            
            tmp = min(root->right);
            root->key = tmp->key;
            root->right = delete(root->right, tmp->key);
        }
    }
    
    // 삭제 후에 root가 NULL인경우
    if (root == NULL) return root;
    
    // 현재 height를 update해준다.
    root->height = 1 + MAX(height(root->left),height(root->right));
    
    // balance 값을 가져온다.
    int bal = balance(root);
    
    // 불규칙한 경우
    // LL
    if (bal > 1 && balance(root->left) >= 0)
        return right_rotate(root);
    
    // LR
    if (bal > 1 && balance(root->left) < 0){
        root->left =  left_rotate(root->left);
        return right_rotate(root);
    }
    
    // RR
    if (bal < -1 && balance(root->right) <= 0)
        return left_rotate(root);
    
    // RL
    if (bal < -1 && balance(root->right) > 0){
        root->right = right_rotate(root->right);
        return left_rotate(root);
    }
    
    return root;
}
PreviousMazeNext이진탐색트리(Binary Search Tree)

Last updated 3 years ago

Was this helpful?