Vue.js
1.0.0
1.0.0
  • README
  • Git
    • Basic
    • Remote Repository
    • Log & Diff
    • Rebase&Cherri-Pick
    • git-flow
  • DevOps
    • Monolithic vs MSA
    • Jenkins 시작하기
    • Airflow 시작하기
    • Airflow 시작하기
    • Build Tools
      • maven
  • 개발 방법론
    • TDD
  • Spring
    • IoC
    • Is Spring Bean Thread-Safe?
    • Spring Singleton
    • Component Scan
    • Spring Annotation
    • 의존 관계 주입(DI)
    • Lombok 활용하기
    • Bean 생명주기와 콜백
    • Bean Scope
    • AOP(1) - AOP란
    • AOP(2) - Aop Proxy
    • AOP(3) - Dynamic Proxy
    • AOP(4) - AspectJ
    • POJO
    • Spring 서비스 구조
    • Transaction
    • JPA란?
    • JPA Entity
    • Spring Data JPA
    • Spring Data Specification
    • Model Mapping
    • Cache
    • restTemplate
    • YAML 파일 설정
    • Spring Boot
      • H2 DB 설정
      • 다중 데이터베이스 설정
      • Mybatis 연동하기
    • Spring Batch
      • Batch 시작해보기
      • Batch Job Flow
      • Job
      • Step
      • Batch Scope & Job Parameter
      • JobRepository와 메타테이블
      • Chunk 지향 프로그래밍
      • ItemReader
      • ItemProcessor
      • ItemWriter
      • Batch Schedular
      • Job별 Bean등록하기
      • Batch 구현시 발생한 오류 정리
      • Spring Batch Scaling
        • Multithread Job구현시 이슈사항
    • Spring test
      • Junit5
        • 테스트 이름 표기
        • 테스트 그룹 사이의 관계
        • 태그와 필터링
        • 동적 테스트
        • 테스트 LifeCycle
        • 테스트 메서드
        • 테스트 순서
        • AssertJ
        • 테스트 병렬 실행
        • AssertJ
        • Mock
      • Spring Boot Test DB 분리
      • Spring Batch Test
  • Web Application
    • Web Server & WAS
    • 관련 개념 - HTTP API, HTML, CSR, SSR
    • Servlet
    • JSP
    • Cookie And Session
    • 예외페이지
    • Java Bean
    • JDBC
    • Connection Pool
    • 파일 업로드
    • Expression Language
    • JSTL
    • FrontController패턴 Command 패턴
    • Forwarding
    • MVC
    • 회원가입예제
    • 참고
      • 개발환경설정
  • Java+
    • SOAP/WSDL vs REST
    • WSDL을 JAVA로 변환하기
    • SOAP 통신 OPEN API로 개발해보기
  • Java
    • Basic
      • 변수와 타입
      • 연산자
      • 조건문과 반복문
      • 참조 타입
      • 클래스
      • 상속(Inheritance)
      • 인터페이스(Interface)
      • 중첩 클래스와 중첩 인터페이스
      • 예외 처리
      • API - Object, System, Class, Math, Wrapper
      • API - String, StringBuffer, StringBuilder
      • Thread
      • Generic
      • Lambda
      • Collection - List, Set
      • Collection - Map
      • Collection - Tree
      • Collection - Stack, Queue
      • Stream
      • Reflection
      • 정규표현식
      • GUI
      • UML
      • Serializable
    • Advanced
      • OutOfMemoryError
      • AutoValue
      • meta-annotation
        • @Retention
        • @Target
        • @Repeatable
    • Effective Java 3/E
      • ITEM 1: Static Factory Method(정적 메소드)
      • ITEM 2: Builder Pattern
      • ITEM 3: Singleton
      • ITEM 4: Private Constructor
      • ITEM 5: Dependency Injection
      • ITEM 6: Avoid Unnecessary Object
      • ITEM 7: Eliminate Object Reference
      • ITEM 8: Avoid finalizer and cleaner
      • ITEM 9: try-with-resources
      • ITEM 10: The gerneral contract when overriding equlas
      • ITEM 11: Overriding hashCode
      • ITEM 12: overriding toString
      • ITEM 13: overriding clone judiciously
      • ITEM 14: Consider implementing comparable
      • ITEM 15: 클래스와 멤버의 접근을 최소화해라
      • ITEM 16: Use Accessor methods
      • ITEM 17: 변경 가능성을 최소화해라(불변 클래스)
      • ITEM 18: 상속보단 컴포지션을 사용해라
      • ITEM 19: 상속을 고려해 설계하고 문서화해라
      • ITEM 20: 추상 클래스보다 인터페이스를 우선하라
      • ITEM 21: 인터페이스는 구현하는 쪽을 생각해 설계해라.
      • ITEM 22: 인터페이스는 타입을 정의하는 용도로만 사용해라
      • ITEM 23: 태그 달린 클래스보다 클래스 계층구조를 활용해라
      • ITEM 24: 멤버 클래스는 되도록 static으로 구현해라
      • ITEM 25: 톱레벨 클래스는 한 파일에 하나만 생성해라.
      • ITEM 26: Raw type은 사용하지 마라
      • ITEM 27: 비검사 경고를 제거해라
      • ITEM 28: 배열보다는 리스트를 사용해라
      • ITEM 29: 이왕이면 제네릭 타입으로 만들어라
      • ITEM 30: 이왕이면 제네릭 메서드로 만들어라
      • ITEM 31 : 한정적 와일드카드를 사용해 API 유연성을 높여라
      • ITEM 32: 제네릭과 가변인수를 함께 쓸 때는 신중해라
      • ITEM 33: 타입 안전 이종 컨테이너를 고려해라
      • ITEM 34: int 상수 대신 열거 타입을 사용해라
      • ITEM 35: ordinal 메서드 대신 인스턴스 필드를 사용해라
      • ITEM 36: 비트 필드 대신 EnumSet을 사용해라
      • ITEM 37: ordinal 인덱싱 대신 EnumMap을 사용해라
      • TEM 38 : 확장할 수 있는 열거타입이 필요하면 인터페이스를 사용해라
      • ITEM 39: 명명 패턴보다 애너테이션을 사용해라
      • ITEM 40: @Override 어노테이션을 일관되게 사용해라
      • ITEM 41: 정의하려는 것이 타입이라면 마커 인터페이스를 사용해라
      • ITEM 42: 익명 클래스보다는 람다를 사용해라
      • ITEM 43: 람다보다는 메서드 참조를 사용해라
      • ITEM 44: 표준 함수형 인터페이스를 사용해라
      • ITEM 45: 스트림은 주의해서 사용해라
      • ITEM 46: 스트림에서 부작용 없는 함수를 사용해라
      • ITEM 47: 반환 타입으로는 스트림보다 컬렉션이 낫다.
      • ITEM 48: 스트림 병렬화는 주의해서 사용해라
      • ITEM 49: 매개변수가 유효한지 검사해라
      • ITEM 50: 적시에 방어적 복사본을 만들어라
      • ITEM 51: 메서드 시그니처를 신중히 설계해라
      • ITEM 52: 다중정의는 신중히 사용해라
      • ITEM 53: 가변인수는 신중히 사용해라
      • ITEM 54: null이 아닌, 빈 컬렉션이나 배열을 반환해라
      • ITEM 55: Optional 반환은 신중하게 해라
      • ITEM 56: 공개된 API 요소에는 항상 주석을 작성해라
      • ITEM 57: 지역변수의 범위를 최소화해라
      • ITEM 58: 전통적인 for 문보다는 for-each문을 사용해라
      • ITEM 59: 라이브러리를 익히고 사용해라
      • ITEM 60: 정확한 답이 필요하다면 float와 double은 피해라
      • ITEM 61: 박싱된 기본 타입보다는 기본 타입을 사용해라
      • ITEM 62: 다른 타입이 적절하다면 문자열 사용을 피해라
      • ITEM 63: 문자열 연결은 느리니 주의해라
      • ITEM 64: 객체는 인터페이스를 사용해 참조해라
      • ITEM 65: 리플렉션보다는 인터페이스를 사용해라
      • ITEM 66: 네이티브 메서드는 신중히 사용해라
      • ITEM 67: 최적화는 신중히 해라
      • ITEM 68: 일반적으로 통용되는 명명 규칙을 따라라
    • 객체지향 설계 원칙(SOLID)
    • 디자인패턴
      • Strategy Pattern
      • Template Method Pattern
      • Factory Method Pattern
      • Singleton
      • Delegation
      • Proxy
      • Adapter Pattern
    • 실습
      • 인터페이스 실습 - Vehicle
      • 인터페이스 실습 - Remote
      • GUI 실습 - Calculator
      • GUI 실습 - button
      • GUI 실습 - lotto
      • Thread 실습 - 좌석예약, 메세지보내기
    • Jar vs War
  • 데이터베이스
    • KEY
    • Index
    • Transaction
    • Trigger
    • Procedure / Function
    • Package
    • 데이터베이스 배움터
      • 데이터베이스 시스템
      • 관계데이터 모델
      • 관계대수와 SQL
    • MySQL
      • Database란
      • MySQL 시작하기
      • MySQL Database
      • MySQL Table
      • CRUD
      • 관계형 데이터베이스
      • Server와 Client
    • PostgreSQL
    • NoSQL
      • Install Cassandra on mac
      • Cassandra란?
      • NiFi란
  • Algorithm
    • String
    • Recursion
    • Dynamic Programming
    • Array, Struct, Pointer
    • Math
    • Sort
    • List
    • Stack
    • Queue
    • Graph
    • Tree
    • Maze
    • AVL
    • 이진탐색트리(Binary Search Tree)
    • DFS와 BFS
    • 다익스트라 알고리즘(Dijkstra's Algorithm)
    • Red-Black 트리
    • A* 알고리즘
    • Heap
    • Huffman Coding
    • Priority Queue
    • Bellman-Ford 알고리즘
    • C++
      • Class
      • STL
        • STL pair
        • STL Container - Associate Container
        • STL Container - Sequence Container
        • STL Container - Container Adapter
  • JavaScript
    • JABASCRIPT BASIC
    • Shallow Copy vs Deep Copy
    • OBJECT MODEL
    • NODE
    • 동기 처리 vs 비동기 처리
    • AJAX
    • CALLBACK
    • PROMISE
    • DEFERRER
    • UNDERSCORE
    • WEBPACK
    • SCOPE
    • EXECUTION CONTEXT
    • Image Object
    • BFCache란?
    • history.scrollRestoration
    • Intersection Observer
    • JWT - JSON Web Token
    • HTML vs JSON
  • Vue.js
    • 환경설정
    • Vue.js란?
    • Vue Instance
    • Vue Component
    • Vue Router
    • HTTP 통신
    • Template
    • Single File Component
    • Vue Animation
    • Vuex
    • Djnago와 연동하기
  • Backbone.js
    • Model
    • Collection
    • Sync
    • view
  • Node.js
    • Doit! - 노드로 만들 수 있는 대표적인 서버와 용도
    • Doit! - 노드에 대해 알아보고 개발 도구 설치하기
    • Doit! - 노드 간단하게 살펴보기
    • Doit! - 노드의 자바스크립트와 친해지기
    • Doit! - 노드의 기본 기능 알아보기
    • Doit! - 웹 서버 만들기
    • Doit! - 데이터베이스 사용하기
    • Doit! - 익스프레스 프로젝트를 모듈화하기
    • Doit! - 뷰 템플릿 적용하기
    • Doit! - 패스포트로 사용자 인증하기
    • Doit! - 채팅서버 만들기
    • Doit! - JSON-RPC 서버 만들기
  • Python
    • Warning-Could not import the lzma module
    • Pandas
      • Pandas 자료구조
      • Pandas 데이터 입출력
      • DataFrame Data 살펴보기
      • 시각화 도구 - Matplotlib
  • ML
    • 추천 시스템
      • Collaborative Filtering
      • Matrix Factorization
  • Django
    • Basic
      • 환경설정
      • About Django
      • Start Django Project
      • Secret Key 관리하기
      • Settings 분리하기
      • Django App
      • Django View & URL (1)
      • Django Model
        • MySQL 연동
      • Django Admin
      • Django View & URL (2)
      • Django Template
      • Django Template & View & URL
      • Django Static
      • Django form
    • Advanced
      • Django Generic View
      • Django Automated Testing
      • Django Extenstion Template
      • Django Model Package
      • Django OpenSSL setting
    • REST framework
      • Rest API
      • Serializers
      • ViewSet
    • Error
      • 환경설정 zlib 오류발생
      • ModuleNotFoundError
    • 패키지
      • django-debug-toolbar
    • Vue.js 연동하기
  • Ruby
    • variable & input/output
    • 조건문
    • 반복문
    • Array & Hash
    • Method
    • Proc&Lamda
    • Class
  • Ruby on Rails
    • Scaffolding
    • Controller
    • Model
    • Model-M:N relation
    • Model Validation
    • 멋사 10주차 수업(Tip)
  • HTML/CSS
    • Udacity - Intro to HTML/CSS
    • Udacity - Responsive Web Design
    • Udacity - Responsive Images
    • HTML Basic
    • CSS Basic
    • HTML5 Sementic Tag
    • HTML 텍스트 관련 태그들
    • HTML5 멀티미디어
    • HTML 폼 관련 태그들
    • 텍스트 관련 스타일
    • 색상과 배경을 위한 스타일
    • 레이아웃을 위한 스타일
    • CSS 포지셔닝
    • 다재다능한 CSS3 선택자
    • CSS와 애니메이션
    • 반응형 웹이란?
  • OS(운영체제)
    • Linux
      • Daemon
      • Cron
      • 프로세스 관련 명령어
      • 텍스트 파일 명령어
  • Network
    • 네트워크 기본 개념
    • 네트워크 기본 규칙
    • 물리 계층
    • 데이터 링크 계층
    • 네트워크 계층
    • 전송 계층
    • 응용 계층
    • 네트워크 전체 흐름
    • 무선 랜
  • IT 기타지식
    • NAS란
Powered by GitBook
On this page
  • Matplotlib
  • 필요 라이브러리 import
  • 한글 출력 오류
  • 마이너스 폰트 출력 설정
  • 선 그래프
  • 차트 제목, 축 이름 추가
  • 그래프 꾸미기
  • 화면을 분할해 그래프 여러 개 그리기
  • 동일한 그래프에 여러 개의 그래프 그리기
  • 면적 그래프(area plot)
  • 참고

Was this helpful?

  1. Python
  2. Pandas

시각화 도구 - Matplotlib

Matplotlib

데이터 분석시 다루는 데이터의 종류는 매우 다양하며, 크기 또한 방대한 경우가 많다. 시각화를 통해 데이터의 구조와 패턴을 파악하기 용이하며, 다양한 관점에서 데이터에 대한 통찰력을 제공한다.

Matplotlib은 파이썬 표준 시각화 도구라고 부를 수 있을 정도로 2D 평면 그래프에 대한 다양한 포맷과 기능을 제공하고 있다.

필요 라이브러리 import

import matplotlib as mlp
import matplotlib.pyplot as plt

데이터 시각화에 사용할 matplotlib.pyplot 모듈을 import해 사용한다.

한글 출력 오류

numpy를 이용해 임의로 데이터를 생성해서 그래프를 그려볼 것이다.

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np

mpl.rcParams['axes.unicode_minus'] = False # minus 깨짐 설정

data = np.random.randint(-100,100,50).cumsum() # cumsum : 배열 원소들의 누적 합을 계산
print(data)
array([ -68,   10,   90,  172,  132,   56,   21,   59,    9,  -60,  -48,
         23,   68,   -7,  -21,   75,   30,  -58, -102, -141,  -51,   42,
        108,   63,  -31,  -87, -171, -244, -171, -271, -234, -209, -284,
       -252, -177, -191, -249, -162, -199, -106, -152, -234, -232, -178,
       -270, -171, -128, -181, -195, -129])

plt.plot(range(50), data, 'r')
[<matplotlib.lines.Line2D object at 0x11a3bb358>]
plt.ylabel('주식 가격')
Text(0, 0.5, '주식 가격')
plt.xlabel('시간(분)')
Text(0.5, 0, '시간(분)')
plt.show()

차트 제목과 축 이름을 한글로 설정해 출력하는 경우 다음 오류메시지와 함께 깨지는 경우가 발생할 수 있다.

...
.pyenv/versions/pandas/lib/python3.7/site-packages/matplotlib/backends/backend_agg.py:183: RuntimeWarning: Glyph 44221 missing from current font.
  font.set_text(s, 0, flags=flags)

우선 시스템에 설정된 폰트를 확인할 수 있다.

>>> mpl.get_configdir()
'/Users/jeongdaye/.matplotlib'
$ cd /Users/jeongdaye/.matplotlib
$ ls -al
total 232
drwxr-xr-x   4 jeongdaye  staff     128  4 28 17:25 .
drwxrwxr-x+ 83 jeongdaye  staff    2656  5  8 10:10 ..
-rw-r--r--   1 jeongdaye  staff  116875  4 28 17:25 fontlist-v310.json
drwxr-xr-x   2 jeongdaye  staff      64  4 28 17:25 tex.cache

fontlis-v310.json에 현재 사용할 수 있는 폰트들이 있는 것을 확인할 수 있다.

>>> font_list = fm.findSystemFonts(fontpaths=None, fontext='ttf')
>>> font_list = fm.fontManager.ttflist

fontmanager로 현재 시스템에 설정된 폰트들을 확인할 수 있다. 설정할 폰트명을 다음과 같이 가져올 수 있다.

>>> [(f.name, f.fname) for f in fm.fontManager.ttflist if 'D2Coding' in f.name]
[('D2Coding', '/Users/jeongdaye/Library/Fonts/D2Coding-Ver1.3.2-20180524-all.ttc')]

3가지 방법으로 폰트를 설정할 수 있다.

  1. FontProperties 사용하기 : 그래프의 폰트가 필요한 항목마다 지정

path = '/Library/Fonts/NanumSquareRoundR.ttf'
fontprop = fm.FontProperties(fname=path, size=18)
plt.plot(range(50), data, 'r')
plt.title('시간별 가격 추이', fontproperties=fontprop)
plt.ylabel('주식가격', fontproperties=fontprop)
plt.xlabel('시간(분)',fontproperties=fontprop)
  1. matplotlib.rcParams[]로 전역글꼴 설정 방법 - 그래프에 설정을 해주면 적용

plt.rc('font', family='D2Coding')
plt.rcParams['font.family'] = 'D2Coding'
plt.rcParams['font.size'] = 18
print(plt.rcParams['font.family'])
['D2Coding']
  1. 2번 방법을 mpl.matplotlib_fname()로 읽어지는 설정 파일에 직접 해주는 방법.

>>> mpl.matplotlib_fname()
/Users/jeongdaye/.pyenv/versions/pandas/lib/python3.7/site-packages/matplotlib/mpl-data/matplotlibrc

설정 파일에서 font.famliy를 cumstom 설정해주면 재 실행할 때마다 다시 설정하지 않아도 된다.

$ vim /Users/jeongdaye/.pyenv/versions/pandas/lib/python3.7/site-packages/matplotlib/mpl-data/matplotlibrc
##
## Note that font.size controls default text sizes.  To configure
## special text sizes tick labels, axes, labels, title, etc, see the rc
## settings for axes and ticks.  Special text sizes can be defined
## relative to font.size, using the following values: xx-small, x-small,
## small, medium, large, x-large, xx-large, larger, or smaller

font.family  : D2Coding
#font.style   : normal
#font.variant : normal
#font.weight  : normal
#font.stretch : normal
#font.size    : 10.0

마이너스 폰트 출력 설정

그래프에서 마이너스 폰트가 깨지는 문제에 대해 대처할 수 있다.

mpl.rcParams['axes.unicode_minus'] = False

KOSIS의 시도별 전출입 인구수 데이터를 시각화해볼 것이다.

>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>> df = pd.read_excel('시도별 전출입 인구수.xlsx', fillna=0, header=0)
>>> df.head()
   전출지별   전입지별      1970      1971      1972      1973      1974      1975      1976  ...      2009      2010      2011      2012      2013      2014      2015      2016      2017
0  전출지별   전입지별  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  ...  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)
1    전국     전국   4046536   4210164   3687938   4860418   5297969   9011440   6773250  ...   8487275   8226594   8127195   7506691   7411784   7629098   7755286   7378430   7154226
2   NaN  서울특별시   1742813   1671705   1349333   1831858   2050392   3396662   2756510  ...   1873188   1733015   1721748   1555281   1520090   1573594   1589431   1515602   1472937
3   NaN  부산광역시    448577    389797    362202    482061    680984    805979    724664  ...    519310    519334    508043    461042    478451    485710    507031    459015    439073
4   NaN  대구광역시         -         -         -         -         -         -         -  ...    398626    370817    370563    348642    351873    350213    351424    328228    321182

NaN 데이터가 들어 있는 것을 확인할 수 있다. 누락 데이터는 method=ffill 옵션을 사용하면 누락데이터가 들어있는 행의 바로 앞에 위치한 행의 데이터 값을 채울 수 있다.

>>> df = df.fillna(method='ffill')
>>> df.head()
   전출지별   전입지별      1970      1971      1972      1973      1974      1975      1976  ...      2009      2010      2011      2012      2013      2014      2015      2016      2017
0  전출지별   전입지별  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  ...  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)  이동자수 (명)
1    전국     전국   4046536   4210164   3687938   4860418   5297969   9011440   6773250  ...   8487275   8226594   8127195   7506691   7411784   7629098   7755286   7378430   7154226
2    전국  서울특별시   1742813   1671705   1349333   1831858   2050392   3396662   2756510  ...   1873188   1733015   1721748   1555281   1520090   1573594   1589431   1515602   1472937
3    전국  부산광역시    448577    389797    362202    482061    680984    805979    724664  ...    519310    519334    508043    461042    478451    485710    507031    459015    439073
4    전국  대구광역시         -         -         -         -         -         -         -  ...    398626    370817    370563    348642    351873    350213    351424    328228    321182

서울에서 다른 지역으로 이동한 데이터만 추출하여 데이터를 정리할 수 있다.

>>> mask = (df['전출지별'] == '서울특별시') & (df['전입지별'] != '서울특별시')
>>> mask
0      False
1      False
2      False
3      False
4      False
       ...
320    False
321    False
322    False
323    False
324    False
Length: 325, dtype: bool
>>> df_seoul = df[mask]
>>> df_seoul = df_seoul.drop(['전출지별'], axis=1)
>>> df_seoul.rename({'전입지별':'전입지'},axis=1,inplace=True)
>>> df_seoul.set_index('전입지', inplace=True)
>>> df_seoul.head()
          1970     1971     1972     1973     1974     1975     1976     1977     1978  ...     2009     2010     2011     2012     2013     2014     2015     2016     2017
전입지                                                                                     ...
전국     1448985  1419016  1210559  1647268  1819660  2937093  2495620  2678007  3028911  ...  1925452  1848038  1834806  1658928  1620640  1661425  1726687  1655859  1571423
부산광역시    11568    11130    11768    16307    22220    27515    23732    27213    29856  ...    17738    17418    18816    16135    16153    17320    17009    15062    14484
대구광역시        -        -        -        -        -        -        -        -        -  ...    10464    10277    10397    10135    10631    10062    10191     9623     8891
인천광역시        -        -        -        -        -        -        -        -        -  ...    45392    46082    51641    49640    47424    43212    44915    43745    40485
광주광역시        -        -        -        -        -        -        -        -        -  ...    11725    11095    10587    10154     9129     9759     9216     8354     7932

선 그래프

그 중 경기도로 이동한 데이터를 추출해 그래프로 그리면 다음과 같다.

>>> sr_one = df_seoul.loc['경기도']
>>> sr_one.head()
1970    130149
1971    150313
1972     93333
1973    143234
1974    149045

Name: 경기도, dtype: object
>>> plt.plot(sr_one.index, sr_one.values)
[<matplotlib.lines.Line2D object at 0x11a80f278>]
>>> plt.show()
plt.plot(sr_one)

다음과 같이 객체를 전달해도 똑같은 결과를 얻을 수 있다.

차트 제목, 축 이름 추가

plt.title('차트제목')
plt.xlabel('x축이름')
plt.ylabel('y축이름')
>>> plt.plot(sr_one.index, sr_one.values)
[<matplotlib.lines.Line2D object at 0x11409fe80>]
>>> plt.ylabel('이동 인구수')
Text(0, 0.5, '이동 인구수')
>>> plt.xlabel('기간')
Text(0.5, 0, '기간')
>>> plt.title('서울 -> 경기 인구 이동')
Text(0.5, 1.0, '서울 -> 경기 인구 이동')
>>> plt.show()

그래프 꾸미기

  • 그래프 가로, 세로 사이즈 설정하기

plt.figure(figsize=(width, height))
  • x축/y축 범위 지정(최소/최대)

plt.xlim(min, max)
plt.ylim(min, max)
  • x축/y축 라벨 설정

plt.xticks(rotation='vertical') # 라벨 회전
plt.xticks(size=n) # 폰트 크기 설정

plt.yticks(rotation=n) # n도 만큼 회전
plt.yticks(size=n)# 폰트 크기 설정
  • 범례

plt.legend(labels=['라벨'],loc='위치')

loc는 범례를 어느 위치에 노출시킬 것인지 지정하는 옵션이다. loc='best'는 자동으로 최적의 위치를 계산하여 노출시킨다.

Location String
Location Code

'best'

0

'upper right'

1

'upper left'

2

'lower left'

3

'lower right'

4

'right'

5

'center left'

6

'center right'

7

'lower center'

8

'upper center'

9

'center'

10

>>> plt.figure(figsize=(14,5))
<Figure size 1400x500 with 0 Axes>
>>> plt.xticks(rotation='vertical')
(array([0. , 0.2, 0.4, 0.6, 0.8, 1. ]), <a list of 6 Text major ticklabel objects>)
>>> plt.plot(sr_one.index, sr_one.values)
[<matplotlib.lines.Line2D object at 0x11c2222e8>]
>>> plt.xlabel('기간')
Text(0.5, 0, '기간')
>>> plt.ylabel('이동 인구수')
Text(0, 0.5, '이동 인구수')
>>> plt.title('서울->경기 인구 이동')
Text(0.5, 1.0, '서울->경기 인구 이동')
>>> plt.legend(labels=['서울->경기'],loc='best')
<matplotlib.legend.Legend object at 0x11c1f96d8>
>>> plt.show()

스타일 서식 지정

색, 폰트 등 디자인 요소를 변경할 수 있는데, 이는 Matplotlib 실행 환경 설정을 변경하는 것이므로, 다른 파일을 실행할 때도 계속 적용되는 점에 유의한다.

  • 테마 설정하기

plt.style.use('테마명')

이때 어떤 종류가 있는지 확인 할 수 있다.

>>> print(plt.style.available)
['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-dark-palette', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblind10']
  • 마커 설정

plt.plot(x축, 
         y축, 
         marker='O', 			# 마커 모양
         markersize=10, 	# 마커 크기
         markerfacecolor='color', # 마커 색
         linewidth=n, 			# 선 굵기
         color='color'		# 선색상
        ) 
옵션
설명

'o'

선 그래프가 아닌 점 그래프로 표현

marker='o'

마커 모양('o', '+', '*', '.')

markerfacecolor='color'

마커 배경색

markersize=n

마커 크기

color='color'

선 색상

linewidth=n

선 두께

label='text'

라벨 지정

사용할 수 있는 색의 종류는 다음 방법으로 확인할 수 있다.

>>> import matplotlib.colors as mat_colors
>>> colors = {}
>>> for name, hex in mat_colors.cnames.items():
...     colors[name]=hex
...
>>> print(colors)
{'aliceblue': '#F0F8FF', 'antiquewhite': '#FAEBD7', 'aqua': '#00FFFF', 'aquamarine': '#7FFFD4', 'azure': '#F0FFFF', 'beige': '#F5F5DC', 'bisque': '#FFE4C4', 'black': '#000000', 'blanchedalmond': '#FFEBCD', 'blue': '#0000FF', 'blueviolet': '#8A2BE2', 'brown': '#A52A2A', ...}
import pandas as pd
import matplotlib.pyplot as plt

plt.rc('font', family='D2Coding')

df = pd.read_excel('./시도별 전출입 인구수.xlsx', fillna=0, header=0)
df = df.fillna(method='ffill') # NaN이전 행값과 같은 값으로 채우기

mask = (df['전출지별'] == '서울특별시') & (df['전입지별'] != '서울특별시')

df_seoul = df[mask]


df_seoul = df_seoul.drop(['전출지별'], axis=1)
df_seoul.rename({'전입지별':'전입지'}, axis=1, inplace=True)
df_seoul.set_index('전입지', inplace=True)


sr_one = df_seoul.loc['경기도']

plt.style.use('ggplot') # ggplot 스타일 사용
plt.figure(figsize=(14,5))

plt.xticks(size=10, rotation=90)
plt.plot(sr_one.index, sr_one.values, marker='o', markersize=10)

plt.title('서울 -> 경기 인구 이동', size=10)
plt.xlabel('기간', size=10)
plt.ylabel('이동 인구수', size=10)

plt.legend(labels=['서울 -> 경기'], loc='best', fontsize=15)

plt.show()
  • 그래프 주석

plt.annotate('', 
               xy=(x1,y1), # 화살표 머리 부분
               xytext=(x2,y2), # 화살표 꼬리 부분
               xycoords='data', # 좌표체계
               arrowprops=() # 화살표 서식
              )

plt.annotate('텍스트', # 텍스트 입력
              xy=(x1,y1), # 텍스트 위치 기준점
              rotation=n,		# 텍스트 회전 각도
              va='baseline',	# 텍스트 상하 정렬
              ha='center',		# 텍스트 좌우 정렬
              fontsize=n,		# 텍스트 크기
              )
plt.ylim(50000, 800000) # y축 범위 지정


# 화살표 그리기(주석)
plt.annotate('', 
	xy=(20, 620000), 
	xytext=(2,290000), 
	xycoords='data', 
	arrowprops=dict(arrowstyle='->', color='skyblue',lw=5),
) 

plt.annotate('', 
	xy=(47, 450000), 
	xytext=(30,580000), 
	xycoords='data', 
	arrowprops=dict(arrowstyle='->', color='olive',lw=5),
) 


# 텍스트 표시(주석)
plt.annotate('인구 이동 증가(1970-1995)', # 텍스트 입력
	xy=(10,450000), # 텍스트 위치 기준점
	rotation=25,		# 텍스트 회전 각도
	va='baseline',	# 텍스트 상하 정렬
	ha='center',		# 텍스트 좌우 정렬
	fontsize=15,		# 텍스트 크기
	)

plt.annotate('인구 이동 감소(1995-2017)', # 텍스트 입력
	xy=(40,560000), # 텍스트 위치 기준점
	rotation=-11,		# 텍스트 회전 각도
	va='baseline',	# 텍스트 상하 정렬
	ha='center',		# 텍스트 좌우 정렬
	fontsize=15,		# 텍스트 크기
	)

plt.show()

화면을 분할해 그래프 여러 개 그리기

화면을 여러개로 분할하고 분할된 각 화면에 서로 다른 그래프를 그릴 수 있다. 한 화면에서 여러개의 그래프를 비교하거나 다양한 정보를 동시에 보여줄 때 사용하면 좋다.

figure() 함수를 사용해 그래프를 그리는 그림틀을 만들고, 그림틀 객체에 add_subplot() 메소드를 적용하여 그림틀을 여러개로 분할할 수 있다. 이때 나눠진 각 부분을 axe 객체라고 부른다.

fig = plt.figure(figsize=(w,h))
axe = fig.add_subplot(행, 열, 순서)
fig = plt.figure(figsize=(10,10))
axe1 = fig.add_subplot(2, 1, 1)
axe2 = fig.add_subplot(2, 1, 2)

axe1.plot(sr_one, 'o', markersize=10)
axe2.plot(sr_one, marker='o', markerfacecolor='green', markersize=10, color='olive', linewidth=2, label='서울 -> 경기')
axe2.legend(loc='best')

axe1.set_ylim(50000,800000)
axe2.set_ylim(50000,800000)

axe1.set_xticklabels(sr_one.index, rotation=75)
axe2.set_xticklabels(sr_one.index, rotation=75)

plt.show()

동일한 그래프에 여러 개의 그래프 그리기

같은 axe 객체에 plot()으로 그래프 여러 개를 동시에 그릴 수 있다.

col_years = list(map(str, range(1970, 2018)))
df_3 = df_seoul.loc[['충청남도','경상북도', '강원도'], col_years]

fig = plt.figure(figsize=(20,5))
ax = fig.add_subplot(1,1,1)

ax.plot(col_years, df_3.loc['충청남도',:], marker='o', markerfacecolor='green', markersize=10, color='olive', linewidth=2, label='서울->충남')
ax.plot(col_years, df_3.loc['경상북도',:], marker='o', markerfacecolor='blue', markersize=10, color='skyblue', linewidth=2, label='서울->경북')
ax.plot(col_years, df_3.loc['강원도',:], marker='o', markerfacecolor='red', markersize=10, color='magenta', linewidth=2, label='서울->강원')

ax.legend(loc='best')

ax.set_title('서울 -> 충남, 경북, 강원 인구 이동', size=20)
ax.set_xlabel('기간', size=12)
ax.set_ylabel('인구 이동수', size=12)

ax.set_xticklabels(col_years, rotation=90)

ax.tick_params(axis='x', labelsize=10)
ax.tick_params(axis='y', labelsize=10)

plt.show()

면적 그래프(area plot)

면적 그래프는 각 열의 데이터를 선 그래프로 구현하며, 선 그래프와 x축 사이의 공간이 색으로 채워진다. 색의 투명도(alpha)는 기본값 0.5로 투과되어 보인다.

이때 그래프를 누적할지 여부를 stacked=True 옵션으로 설정할 수 있다. stacked=False 로 옵션을 지정하면 각 열의 선 그래프들은 누적되지 않고 서로 겹치도록 표신된다.

df.plot(kind='area', stacked=bool, alpha=n, figsize(w,h))
df_4 = df_4.T
df_4.index = df_4.index.map(int)

df_4.plot(kind='area', stacked=False, alpha=0.2, figsize=(20,10))
plt.title('서울 -> 타도시 인구 이동', size=10)
plt.xlabel('기간', size=10)
plt.ylabel('이동 인구수', size=10)

plt.legend(loc='best', fontsize=15)

plt.show()

참고

PreviousDataFrame Data 살펴보기NextML

Last updated 3 years ago

Was this helpful?

에서 어떻게 적용되는지 확인할 수 있다.

https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://m.blog.naver.com/PostView.nhn?blogId=wideeyed&logNo=221225208497&proxyReferer=https:%2F%2Fwww.google.com%2F
파이썬 머신러닝 판다스 데이터 분석
한글 깨짐
image-20200508105230830
image-20200507115537210
image-20200507150626871
image-20200507154012423
image-20200507155806647
image-20200507162614674
stacked=False
stacked=True
image-20200506154933205